资源名称:数据挖掘导论(完整版)

内容简介:

本书全面介绍了数据挖掘的理论和方法,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。本书涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。此外,书中还提供了大量示例、图表和习题。

  本书适合作为相关专业高年级本科生和研究生数据挖掘课程的教材,同时也可作为数据挖掘研究和应用开发人员的参考书。

资源目录:

第1章 绪论

 1.1 什么是数据挖掘

 1.2 数据挖掘要解决的问题

 1.3 数据挖掘的起源

 1.4 数据挖掘任务

 1.5 本书的内容与组织

 文献注释

 参考文献

 习题

第2章 数据

 2.1 数据类型

  2.1.1 属性与度量

  2.1.2 数据集的类型

 2.2 数据质量

  2.2.1 测量和数据收集问题

  2.2.2 关于应用的问题

 2.3 数据预处理

  2.3.1 聚集

  2.3.2 抽样

  2.3.3 维归约

  2.3.4 特征子集选择

  2.3.5 特征创建

  2.3.6 离散化和二元化

  2.3.7 变量变换

 2.4 相似性和相异性的度量

  2.4.1 基础

  2.4.2 简单属性之间的相似度和相异度

  2.4.3 数据对象之间的相异度

  2.4.4 数据对象之间的相似度

  2.4.5 邻近性度量的例子

  2.4.6 邻近度计算问题

  2.4.7 选取正确的邻近性度量

 文献注释

 参考文献

 习题

第3章 探索数据

第4章 分类:基本概念、决策树与模型评估

第5章 分类:其他技术

第6章 关联分析:基本概念和算法

第7章 关联分析:高级概念

第8章 聚类分析:基本概念和算法

第9章 聚类分析:其他问题与算法

第10章 异常检测

文献注释

参考文献

习题

附录a 线性代数

附录b 维归约

附录c 概率统计

附录d 回归

附录e 优化

资源截图:

1.png

本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。

最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。

对于会员专享、整站源码、程序插件、网站模板、网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。

如果您已经成功付款但是网站没有弹出成功提示,请联系站长提供付款信息为您处理

源码素材属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源