本课程与使用 NVIDIA Modulus 的 PINN 高级主题相关。我们将涵盖逆 PINN、使用 DeepONet 的深度神经算子网络、使用傅里叶神经算子 (FNO) 的深度神经算子网络、用于 3D 线性弹性问题的 PINN、用于多域计算的 PINN 以及使用 PINN 的几何优化等主题。

Published 4/2024
Created by Dr.Mohammad Samara
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 66 Lectures ( 10h 5m ) | Size: 13.5 GB

含工程源文件

你将学到哪些技能:

在本课程中,您将学习以下技能:

了解使用 PINN、I-PINN、DeepONet 的深度神经网络算子网络以及 FNO、多域计算和最终使用 PINN 的几何优化来解决偏微分方程 (PDE)背后的数学原理。

编写并构建机器学习算法,使用Nvidia Modulus解决 PINN 。

对结果进行后处理。

预处理数据并将其上传至Nvidia Modulus。

使用开源库。

我们将介绍:

  • 二维散热器流动问题的逆物理信息神经网络(I-PINN)解决方案。
  • 深度神经网络操作网络(DeepONet)解决 积分问题。
  • 深度神经网络算子傅里叶神经算子(FNO)解决 达西问题。
  • 物理信息神经网络(PINN)解决 3D 线性弹性问题。
  • 用于 3D 流体/固体多域计算的物理信息神经网络(PINN)解决方案。
  • 用于热交换器流动问题的 3D 几何优化的物理信息神经网络(PINN)解决方案 。

如果您之前没有机器学习或计算工程方面的经验,那也没问题。但是,建议您了解Nvidia Modulus 的使用和代码运行的基础知识。

让我们一起享受学习 Nvidia Modulus 的乐趣吧。

你将会学到的

  • 用于二维散热器流动问题的 I-PINN。
  • DeepONet 用于集成问题。
  • 用于达西问题的傅里叶神经算子 FNO。
  • 用于 3D 线性弹性问题的 PINN。
  • 用于 3D 流体/固体多域计算的 PINN。
  • 用于热交换器流动问题的 3D 几何优化的 PINN。

此课程面向哪些人:

  • 想要学习 PINN 的工程师和程序员
  • 学习高级主题 NVIDIA Modulus

本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。

最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。

对于会员专享、整站源码、程序插件、网站模板、网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。

如果您已经成功付款但是网站没有弹出成功提示,请联系站长提供付款信息为您处理

源码素材属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源